Tap the blue circles to see an explanation.
$$ \begin{aligned}(4n+1)(4n+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16n^2+28n+4n+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16n^2+32n+7\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4n+1}\right) $ by each term in $ \left( 4n+7\right) $. $$ \left( \color{blue}{4n+1}\right) \cdot \left( 4n+7\right) = 16n^2+28n+4n+7 $$ |
② | Combine like terms: $$ 16n^2+ \color{blue}{28n} + \color{blue}{4n} +7 = 16n^2+ \color{blue}{32n} +7 $$ |