Tap the blue circles to see an explanation.
$$ \begin{aligned}(4k-5)(2k+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8k^2+12k-10k-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8k^2+2k-15\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4k-5}\right) $ by each term in $ \left( 2k+3\right) $. $$ \left( \color{blue}{4k-5}\right) \cdot \left( 2k+3\right) = 8k^2+12k-10k-15 $$ |
② | Combine like terms: $$ 8k^2+ \color{blue}{12k} \color{blue}{-10k} -15 = 8k^2+ \color{blue}{2k} -15 $$ |