Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{42x+10}{(21x^2+10x+8)^3}-\frac{84x+60}{21x^2+10x+8}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{42x+10}{9261x^6+13230x^5+16884x^4+11080x^3+6432x^2+1920x+512}-\frac{84x+60}{21x^2+10x+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-37044x^5-61740x^4-61824x^3-39600x^2-14934x-3830}{9261x^6+13230x^5+16884x^4+11080x^3+6432x^2+1920x+512}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{21x^2+10x+8}\right) $ by each term in $ \left( 21x^2+10x+8\right) $. $$ \left( \color{blue}{21x^2+10x+8}\right) \cdot \left( 21x^2+10x+8\right) = \\ = 441x^4+210x^3+168x^2+210x^3+100x^2+80x+168x^2+80x+64 $$ |
② | Combine like terms: $$ 441x^4+ \color{blue}{210x^3} + \color{red}{168x^2} + \color{blue}{210x^3} + \color{green}{100x^2} + \color{orange}{80x} + \color{green}{168x^2} + \color{orange}{80x} +64 = \\ = 441x^4+ \color{blue}{420x^3} + \color{green}{436x^2} + \color{orange}{160x} +64 $$ |
③ | Multiply each term of $ \left( \color{blue}{441x^4+420x^3+436x^2+160x+64}\right) $ by each term in $ \left( 21x^2+10x+8\right) $. $$ \left( \color{blue}{441x^4+420x^3+436x^2+160x+64}\right) \cdot \left( 21x^2+10x+8\right) = \\ = 9261x^6+4410x^5+3528x^4+8820x^5+4200x^4+3360x^3+9156x^4+4360x^3+3488x^2+3360x^3+1600x^2+1280x+1344x^2+640x+512 $$ |
④ | Combine like terms: $$ 9261x^6+ \color{blue}{4410x^5} + \color{red}{3528x^4} + \color{blue}{8820x^5} + \color{green}{4200x^4} + \color{orange}{3360x^3} + \color{green}{9156x^4} + \color{blue}{4360x^3} + \color{red}{3488x^2} + \color{blue}{3360x^3} + \color{green}{1600x^2} + \color{orange}{1280x} + \color{green}{1344x^2} + \color{orange}{640x} +512 = \\ = 9261x^6+ \color{blue}{13230x^5} + \color{green}{16884x^4} + \color{blue}{11080x^3} + \color{green}{6432x^2} + \color{orange}{1920x} +512 $$ |
⑤ | To subtract raitonal expressions, both fractions must have the same denominator. |