Tap the blue circles to see an explanation.
$$ \begin{aligned}(4-x)\cdot(7-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}28-4x-7x+x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-11x+28\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{4-x}\right) $ by each term in $ \left( 7-x\right) $. $$ \left( \color{blue}{4-x}\right) \cdot \left( 7-x\right) = 28-4x-7x+x^2 $$ |
② | Combine like terms: $$ 28 \color{blue}{-4x} \color{blue}{-7x} +x^2 = x^2 \color{blue}{-11x} +28 $$ |