Tap the blue circles to see an explanation.
$$ \begin{aligned}(4-2x)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16-16x+4x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-16x+16\end{aligned} $$ | |
① | Find $ \left(4-2x\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4 } $ and $ B = \color{red}{ 2x }$. $$ \begin{aligned}\left(4-2x\right)^2 = \color{blue}{4^2} -2 \cdot 4 \cdot 2x + \color{red}{\left( 2x \right)^2} = 16-16x+4x^2\end{aligned} $$ |
② | Combine like terms: $$ 4x^2-16x+16 = 4x^2-16x+16 $$ |