Tap the blue circles to see an explanation.
$$ \begin{aligned}(3y^2+z)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}81y^8+108y^6z+54y^4z^2+12y^2z^3+z^4\end{aligned} $$ | |
① | $$ (3y^2+z)^4 = (3y^2+z)^2 \cdot (3y^2+z)^2 $$ |
② | Find $ \left(3y^2+z\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3y^2 } $ and $ B = \color{red}{ z }$. $$ \begin{aligned}\left(3y^2+z\right)^2 = \color{blue}{\left( 3y^2 \right)^2} +2 \cdot 3y^2 \cdot z + \color{red}{z^2} = 9y^4+6y^2z+z^2\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{9y^4+6y^2z+z^2}\right) $ by each term in $ \left( 9y^4+6y^2z+z^2\right) $. $$ \left( \color{blue}{9y^4+6y^2z+z^2}\right) \cdot \left( 9y^4+6y^2z+z^2\right) = \\ = 81y^8+54y^6z+9y^4z^2+54y^6z+36y^4z^2+6y^2z^3+9y^4z^2+6y^2z^3+z^4 $$ |
④ | Combine like terms: $$ 81y^8+ \color{blue}{54y^6z} + \color{red}{9y^4z^2} + \color{blue}{54y^6z} + \color{green}{36y^4z^2} + \color{orange}{6y^2z^3} + \color{green}{9y^4z^2} + \color{orange}{6y^2z^3} +z^4 = \\ = 81y^8+ \color{blue}{108y^6z} + \color{green}{54y^4z^2} + \color{orange}{12y^2z^3} +z^4 $$ |