Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+8)^2\cdot3x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(9x^2+48x+64)\cdot3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}27x^3+144x^2+192x\end{aligned} $$ | |
① | Find $ \left(3x+8\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x } $ and $ B = \color{red}{ 8 }$. $$ \begin{aligned}\left(3x+8\right)^2 = \color{blue}{\left( 3x \right)^2} +2 \cdot 3x \cdot 8 + \color{red}{8^2} = 9x^2+48x+64\end{aligned} $$ |
② | $$ \left( \color{blue}{9x^2+48x+64}\right) \cdot 3x = 27x^3+144x^2+192x $$ |