Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+6)(x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+21x+6x+42 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+27x+42\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+6}\right) $ by each term in $ \left( x+7\right) $. $$ \left( \color{blue}{3x+6}\right) \cdot \left( x+7\right) = 3x^2+21x+6x+42 $$ |
② | Combine like terms: $$ 3x^2+ \color{blue}{21x} + \color{blue}{6x} +42 = 3x^2+ \color{blue}{27x} +42 $$ |