Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+5)(4x^2-5x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12x^3-15x^2+20x^2-25x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x^3+5x^2-25x\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+5}\right) $ by each term in $ \left( 4x^2-5x\right) $. $$ \left( \color{blue}{3x+5}\right) \cdot \left( 4x^2-5x\right) = 12x^3-15x^2+20x^2-25x $$ |
② | Combine like terms: $$ 12x^3 \color{blue}{-15x^2} + \color{blue}{20x^2} -25x = 12x^3+ \color{blue}{5x^2} -25x $$ |