Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+4y-5)(4x+3y-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x^2+25xy+12y^2-35x-35y+25\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+4y-5}\right) $ by each term in $ \left( 4x+3y-5\right) $. $$ \left( \color{blue}{3x+4y-5}\right) \cdot \left( 4x+3y-5\right) = 12x^2+9xy-15x+16xy+12y^2-20y-20x-15y+25 $$ |
② | Combine like terms: $$ 12x^2+ \color{blue}{9xy} \color{red}{-15x} + \color{blue}{16xy} +12y^2 \color{green}{-20y} \color{red}{-20x} \color{green}{-15y} +25 = \\ = 12x^2+ \color{blue}{25xy} +12y^2 \color{red}{-35x} \color{green}{-35y} +25 $$ |