Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)^4-2(x^3-1)(6x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}81x^4+216x^3+216x^2+96x+16-2(x^3-1)(6x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}81x^4+216x^3+216x^2+96x+16-(2x^3-2)(6x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}81x^4+216x^3+216x^2+96x+16-(12x^4-6x^3-12x+6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}81x^4+216x^3+216x^2+96x+16-12x^4+6x^3+12x-6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}69x^4+222x^3+216x^2+108x+10\end{aligned} $$ | |
① | $$ (3x+2)^4 = (3x+2)^2 \cdot (3x+2)^2 $$ |
② | Find $ \left(3x+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(3x+2\right)^2 = \color{blue}{\left( 3x \right)^2} +2 \cdot 3x \cdot 2 + \color{red}{2^2} = 9x^2+12x+4\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{9x^2+12x+4}\right) $ by each term in $ \left( 9x^2+12x+4\right) $. $$ \left( \color{blue}{9x^2+12x+4}\right) \cdot \left( 9x^2+12x+4\right) = 81x^4+108x^3+36x^2+108x^3+144x^2+48x+36x^2+48x+16 $$ |
④ | Combine like terms: $$ 81x^4+ \color{blue}{108x^3} + \color{red}{36x^2} + \color{blue}{108x^3} + \color{green}{144x^2} + \color{orange}{48x} + \color{green}{36x^2} + \color{orange}{48x} +16 = \\ = 81x^4+ \color{blue}{216x^3} + \color{green}{216x^2} + \color{orange}{96x} +16 $$ |
⑤ | Multiply $ \color{blue}{2} $ by $ \left( x^3-1\right) $ $$ \color{blue}{2} \cdot \left( x^3-1\right) = 2x^3-2 $$ |
⑥ | Multiply each term of $ \left( \color{blue}{2x^3-2}\right) $ by each term in $ \left( 6x-3\right) $. $$ \left( \color{blue}{2x^3-2}\right) \cdot \left( 6x-3\right) = 12x^4-6x^3-12x+6 $$ |
⑦ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 12x^4-6x^3-12x+6 \right) = -12x^4+6x^3+12x-6 $$ |
⑧ | Combine like terms: $$ \color{blue}{81x^4} + \color{red}{216x^3} +216x^2+ \color{green}{96x} + \color{orange}{16} \color{blue}{-12x^4} + \color{red}{6x^3} + \color{green}{12x} \color{orange}{-6} = \\ = \color{blue}{69x^4} + \color{red}{222x^3} +216x^2+ \color{green}{108x} + \color{orange}{10} $$ |