Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)(x+\frac{1}{2})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+2)\frac{2x+1}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6x^2+7x+2}{2}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 3x+2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3x+2 \cdot \frac{2x+1}{2} & \xlongequal{\text{Step 1}} \frac{3x+2}{\color{red}{1}} \cdot \frac{2x+1}{2} \xlongequal{\text{Step 2}} \frac{ \left( 3x+2 \right) \cdot \left( 2x+1 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6x^2+3x+4x+2 }{ 2 } = \frac{6x^2+7x+2}{2} \end{aligned} $$ |