Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)(x^2+4x+9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^3+12x^2+27x+2x^2+8x+18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^3+14x^2+35x+18\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+2}\right) $ by each term in $ \left( x^2+4x+9\right) $. $$ \left( \color{blue}{3x+2}\right) \cdot \left( x^2+4x+9\right) = 3x^3+12x^2+27x+2x^2+8x+18 $$ |
② | Combine like terms: $$ 3x^3+ \color{blue}{12x^2} + \color{red}{27x} + \color{blue}{2x^2} + \color{red}{8x} +18 = 3x^3+ \color{blue}{14x^2} + \color{red}{35x} +18 $$ |