Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)(2x^2-5x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3-15x^2+12x+4x^2-10x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3-11x^2+2x+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+2}\right) $ by each term in $ \left( 2x^2-5x+4\right) $. $$ \left( \color{blue}{3x+2}\right) \cdot \left( 2x^2-5x+4\right) = 6x^3-15x^2+12x+4x^2-10x+8 $$ |
② | Combine like terms: $$ 6x^3 \color{blue}{-15x^2} + \color{red}{12x} + \color{blue}{4x^2} \color{red}{-10x} +8 = 6x^3 \color{blue}{-11x^2} + \color{red}{2x} +8 $$ |