Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x+2)(-x^2-3x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-3x^3-9x^2+3x-2x^2-6x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^3-11x^2-3x+2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x+2}\right) $ by each term in $ \left( -x^2-3x+1\right) $. $$ \left( \color{blue}{3x+2}\right) \cdot \left( -x^2-3x+1\right) = -3x^3-9x^2+3x-2x^2-6x+2 $$ |
② | Combine like terms: $$ -3x^3 \color{blue}{-9x^2} + \color{red}{3x} \color{blue}{-2x^2} \color{red}{-6x} +2 = -3x^3 \color{blue}{-11x^2} \color{red}{-3x} +2 $$ |