Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x-5)(6x^2-2x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}18x^3-6x^2-27x-30x^2+10x+45 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}18x^3-36x^2-17x+45\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x-5}\right) $ by each term in $ \left( 6x^2-2x-9\right) $. $$ \left( \color{blue}{3x-5}\right) \cdot \left( 6x^2-2x-9\right) = 18x^3-6x^2-27x-30x^2+10x+45 $$ |
② | Combine like terms: $$ 18x^3 \color{blue}{-6x^2} \color{red}{-27x} \color{blue}{-30x^2} + \color{red}{10x} +45 = 18x^3 \color{blue}{-36x^2} \color{red}{-17x} +45 $$ |