Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x-4)(3x\cdot2-4x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x-4)(6x-4x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x-4)(2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^2-15x-8x+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}6x^2-23x+20\end{aligned} $$ | |
① | $$ 3 x \cdot 2 = 6 x $$ |
② | Combine like terms: $$ \color{blue}{6x} \color{blue}{-4x} -5 = \color{blue}{2x} -5 $$ |
③ | Multiply each term of $ \left( \color{blue}{3x-4}\right) $ by each term in $ \left( 2x-5\right) $. $$ \left( \color{blue}{3x-4}\right) \cdot \left( 2x-5\right) = 6x^2-15x-8x+20 $$ |
④ | Combine like terms: $$ 6x^2 \color{blue}{-15x} \color{blue}{-8x} +20 = 6x^2 \color{blue}{-23x} +20 $$ |