Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x-2)x(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x^2-2x)(2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3+3x^2-4x^2-2x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^3-x^2-2x\end{aligned} $$ | |
① | $$ \left( \color{blue}{3x-2}\right) \cdot x = 3x^2-2x $$ |
② | Multiply each term of $ \left( \color{blue}{3x^2-2x}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{3x^2-2x}\right) \cdot \left( 2x+1\right) = 6x^3+3x^2-4x^2-2x $$ |
③ | Combine like terms: $$ 6x^3+ \color{blue}{3x^2} \color{blue}{-4x^2} -2x = 6x^3 \color{blue}{-x^2} -2x $$ |