$$ \begin{aligned}(3x^5-y^3)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x^{10}-6x^5y^3+y^6\end{aligned} $$ | |
① | Find $ \left(3x^5-y^3\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x^5 } $ and $ B = \color{red}{ y^3 }$. $$ \begin{aligned}\left(3x^5-y^3\right)^2 = \color{blue}{\left( 3x^5 \right)^2} -2 \cdot 3x^5 \cdot y^3 + \color{red}{\left( y^3 \right)^2} = 9x^{10}-6x^5y^3+y^6\end{aligned} $$ |