$$ \begin{aligned}(3x^3y^2)^3(2x^4y^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}27x^9y^64x^8y^4 \xlongequal{ } \\[1 em] & \xlongequal{ }108x^{17}y^{10}\end{aligned} $$ | |
① | $$ \left( 3x^3y^2 \right)^3 = 3^3 \left( x^3 \right)^3 \left( y^2 \right)^3 = 27x^9y^6 $$$$ \left( 2x^4y^2 \right)^2 = 2^2 \left( x^4 \right)^2 \left( y^2 \right)^2 = 4x^8y^4 $$ |