$$ \begin{aligned}(3x^3+y^2)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x^6+6x^3y^2+y^4\end{aligned} $$ | |
① | Find $ \left(3x^3+y^2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x^3 } $ and $ B = \color{red}{ y^2 }$. $$ \begin{aligned}\left(3x^3+y^2\right)^2 = \color{blue}{\left( 3x^3 \right)^2} +2 \cdot 3x^3 \cdot y^2 + \color{red}{\left( y^2 \right)^2} = 9x^6+6x^3y^2+y^4\end{aligned} $$ |