Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x^3-y^4)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x^6-6x^3y^4+y^8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}y^8-6x^3y^4+9x^6\end{aligned} $$ | |
① | Find $ \left(3x^3-y^4\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x^3 } $ and $ B = \color{red}{ y^4 }$. $$ \begin{aligned}\left(3x^3-y^4\right)^2 = \color{blue}{\left( 3x^3 \right)^2} -2 \cdot 3x^3 \cdot y^4 + \color{red}{\left( y^4 \right)^2} = 9x^6-6x^3y^4+y^8\end{aligned} $$ |
② | Combine like terms: $$ y^8-6x^3y^4+9x^6 = y^8-6x^3y^4+9x^6 $$ |