$$ \begin{aligned}(3x^3+1)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}27x^9+27x^6+9x^3+1\end{aligned} $$ | |
① | Find $ \left(3x^3+1\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 3x^3 $ and $ B = 1 $. $$ \left(3x^3+1\right)^3 = \left( 3x^3 \right)^3+3 \cdot \left( 3x^3 \right)^2 \cdot 1 + 3 \cdot 3x^3 \cdot 1^2+1^3 = 27x^9+27x^6+9x^3+1 $$ |