Tap the blue circles to see an explanation.
$$ \begin{aligned}3x^2+4xy+5y^2-(2x^2-5xy-4y^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+4xy+5y^2-2x^2+5xy+4y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+9xy+9y^2\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^2-5xy-4y^2 \right) = -2x^2+5xy+4y^2 $$ |
② | Combine like terms: $$ \color{blue}{3x^2} + \color{red}{4xy} + \color{green}{5y^2} \color{blue}{-2x^2} + \color{red}{5xy} + \color{green}{4y^2} = \color{blue}{x^2} + \color{red}{9xy} + \color{green}{9y^2} $$ |