Tap the blue circles to see an explanation.
$$ \begin{aligned}(3x^2-16x-2)(x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^3-18x^2-16x^2+96x-2x+12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^3-34x^2+94x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3x^2-16x-2}\right) $ by each term in $ \left( x-6\right) $. $$ \left( \color{blue}{3x^2-16x-2}\right) \cdot \left( x-6\right) = 3x^3-18x^2-16x^2+96x-2x+12 $$ |
② | Combine like terms: $$ 3x^3 \color{blue}{-18x^2} \color{blue}{-16x^2} + \color{red}{96x} \color{red}{-2x} +12 = 3x^3 \color{blue}{-34x^2} + \color{red}{94x} +12 $$ |