Tap the blue circles to see an explanation.
$$ \begin{aligned}3w^2-2x^2+3w-(w^2+2z^2+3w)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3w^2-2x^2+3w-w^2-2z^2-3w \xlongequal{ } \\[1 em] & \xlongequal{ }3w^2-2x^2+ \cancel{3w}-w^2-2z^2 -\cancel{3w} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2w^2-2x^2-2z^2\end{aligned} $$ | |
① | Remove the parentheses by changing the sign of each term within them. $$ - \left( w^2+2z^2+3w \right) = -w^2-2z^2-3w $$ |
② | Combine like terms: $$ \color{blue}{3w^2} -2x^2+ \, \color{red}{ \cancel{3w}} \, \color{blue}{-w^2} -2z^2 \, \color{red}{ -\cancel{3w}} \, = \color{blue}{2w^2} -2x^2-2z^2 $$ |