Tap the blue circles to see an explanation.
$$ \begin{aligned}(3t^2-1.2t+1)(3t^2-1.2t+1)& \xlongequal{ }(3t^2-t+1)(3t^2-t+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9t^4-6t^3+7t^2-2t+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3t^2-t+1}\right) $ by each term in $ \left( 3t^2-t+1\right) $. $$ \left( \color{blue}{3t^2-t+1}\right) \cdot \left( 3t^2-t+1\right) = 9t^4-3t^3+3t^2-3t^3+t^2-t+3t^2-t+1 $$ |
② | Combine like terms: $$ 9t^4 \color{blue}{-3t^3} + \color{red}{3t^2} \color{blue}{-3t^3} + \color{green}{t^2} \color{orange}{-t} + \color{green}{3t^2} \color{orange}{-t} +1 = 9t^4 \color{blue}{-6t^3} + \color{green}{7t^2} \color{orange}{-2t} +1 $$ |