Tap the blue circles to see an explanation.
$$ \begin{aligned}3+6x-2(x+1)+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3+6x-(2x+2)+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3+6x-2x-2+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x+6\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x+1\right) $ $$ \color{blue}{2} \cdot \left( x+1\right) = 2x+2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+2 \right) = -2x-2 $$ |
③ | Combine like terms: $$ \color{blue}{3} + \color{red}{6x} \color{red}{-2x} \color{green}{-2} + \color{green}{5} = \color{red}{4x} + \color{green}{6} $$ |