Tap the blue circles to see an explanation.
$$ \begin{aligned}(3n+2)^3-1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}27n^3+54n^2+36n+8-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}27n^3+54n^2+36n+7\end{aligned} $$ | |
① | Find $ \left(3n+2\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 3n $ and $ B = 2 $. $$ \left(3n+2\right)^3 = \left( 3n \right)^3+3 \cdot \left( 3n \right)^2 \cdot 2 + 3 \cdot 3n \cdot 2^2+2^3 = 27n^3+54n^2+36n+8 $$ |
② | Combine like terms: $$ 27n^3+54n^2+36n+ \color{blue}{8} \color{blue}{-1} = 27n^3+54n^2+36n+ \color{blue}{7} $$ |