Tap the blue circles to see an explanation.
$$ \begin{aligned}(3a+4b)(3a-4b)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9a^2-12ab+12ab-16b^2 \xlongequal{ } \\[1 em] & \xlongequal{ }9a^2 -\cancel{12ab}+ \cancel{12ab}-16b^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9a^2-16b^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3a+4b}\right) $ by each term in $ \left( 3a-4b\right) $. $$ \left( \color{blue}{3a+4b}\right) \cdot \left( 3a-4b\right) = 9a^2 -\cancel{12ab}+ \cancel{12ab}-16b^2 $$ |
② | Combine like terms: $$ 9a^2 \, \color{blue}{ -\cancel{12ab}} \,+ \, \color{blue}{ \cancel{12ab}} \,-16b^2 = 9a^2-16b^2 $$ |