Tap the blue circles to see an explanation.
$$ \begin{aligned}(3-3b)\cdot(2+b)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6+3b-6b-3b^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3b^2-3b+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{3-3b}\right) $ by each term in $ \left( 2+b\right) $. $$ \left( \color{blue}{3-3b}\right) \cdot \left( 2+b\right) = 6+3b-6b-3b^2 $$ |
② | Combine like terms: $$ 6+ \color{blue}{3b} \color{blue}{-6b} -3b^2 = -3b^2 \color{blue}{-3b} +6 $$ |