Tap the blue circles to see an explanation.
$$ \begin{aligned}(2y+17)(y+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2y^2+2y+17y+17 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2y^2+19y+17\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2y+17}\right) $ by each term in $ \left( y+1\right) $. $$ \left( \color{blue}{2y+17}\right) \cdot \left( y+1\right) = 2y^2+2y+17y+17 $$ |
② | Combine like terms: $$ 2y^2+ \color{blue}{2y} + \color{blue}{17y} +17 = 2y^2+ \color{blue}{19y} +17 $$ |