Tap the blue circles to see an explanation.
$$ \begin{aligned}(2y-5)(2y+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4y^2+6y-10y-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4y^2-4y-15\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2y-5}\right) $ by each term in $ \left( 2y+3\right) $. $$ \left( \color{blue}{2y-5}\right) \cdot \left( 2y+3\right) = 4y^2+6y-10y-15 $$ |
② | Combine like terms: $$ 4y^2+ \color{blue}{6y} \color{blue}{-10y} -15 = 4y^2 \color{blue}{-4y} -15 $$ |