Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2x\frac{y}{3}}{x+8\frac{y^2}{3}\cdot\frac{1}{x}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{2xy}{3}}{x+\frac{8y^2}{3}\cdot\frac{1}{x}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{2xy}{3}}{x+\frac{8y^2}{3x}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{\frac{2xy}{3}}{\frac{3x^2+8y^2}{3x}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{6x^2y}{9x^2+24y^2}\end{aligned} $$ | |
① | Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2x \cdot \frac{y}{3} & \xlongequal{\text{Step 1}} \frac{2x}{\color{red}{1}} \cdot \frac{y}{3} \xlongequal{\text{Step 2}} \frac{ 2x \cdot y }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2xy }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8 \cdot \frac{y^2}{3} & \xlongequal{\text{Step 1}} \frac{8}{\color{red}{1}} \cdot \frac{y^2}{3} \xlongequal{\text{Step 2}} \frac{ 8 \cdot y^2 }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8y^2 }{ 3 } \end{aligned} $$ |
③ | Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2x \cdot \frac{y}{3} & \xlongequal{\text{Step 1}} \frac{2x}{\color{red}{1}} \cdot \frac{y}{3} \xlongequal{\text{Step 2}} \frac{ 2x \cdot y }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2xy }{ 3 } \end{aligned} $$ |
④ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{8y^2}{3} \cdot \frac{1}{x} \xlongequal{\text{Step 1}} \frac{ 8y^2 \cdot 1 }{ 3 \cdot x } \xlongequal{\text{Step 2}} \frac{ 8y^2 }{ 3x } \end{aligned} $$ |
⑤ | Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2x \cdot \frac{y}{3} & \xlongequal{\text{Step 1}} \frac{2x}{\color{red}{1}} \cdot \frac{y}{3} \xlongequal{\text{Step 2}} \frac{ 2x \cdot y }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2xy }{ 3 } \end{aligned} $$ |
⑥ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑦ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2xy}{3} }{ \frac{\color{blue}{3x^2+8y^2}}{\color{blue}{3x}} } & \xlongequal{\text{Step 1}} \frac{2xy}{3} \cdot \frac{\color{blue}{3x}}{\color{blue}{3x^2+8y^2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2xy \cdot 3x }{ 3 \cdot \left( 3x^2+8y^2 \right) } \xlongequal{\text{Step 3}} \frac{ 6x^2y }{ 9x^2+24y^2 } \end{aligned} $$ |