Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+5)(2x-5)+4(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-10x+10x-25+4x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-25+4x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^2+4x-33\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+5}\right) $ by each term in $ \left( 2x-5\right) $. $$ \left( \color{blue}{2x+5}\right) \cdot \left( 2x-5\right) = 4x^2 -\cancel{10x}+ \cancel{10x}-25 $$Multiply $ \color{blue}{4} $ by $ \left( x-2\right) $ $$ \color{blue}{4} \cdot \left( x-2\right) = 4x-8 $$ |
② | Combine like terms: $$ 4x^2 \, \color{blue}{ -\cancel{10x}} \,+ \, \color{blue}{ \cancel{10x}} \,-25 = 4x^2-25 $$ |
③ | Combine like terms: $$ 4x^2 \color{blue}{-25} +4x \color{blue}{-8} = 4x^2+4x \color{blue}{-33} $$ |