Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+4)(3x^2+2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^3+4x^2+6x+12x^2+8x+12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^3+16x^2+14x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+4}\right) $ by each term in $ \left( 3x^2+2x+3\right) $. $$ \left( \color{blue}{2x+4}\right) \cdot \left( 3x^2+2x+3\right) = 6x^3+4x^2+6x+12x^2+8x+12 $$ |
② | Combine like terms: $$ 6x^3+ \color{blue}{4x^2} + \color{red}{6x} + \color{blue}{12x^2} + \color{red}{8x} +12 = 6x^3+ \color{blue}{16x^2} + \color{red}{14x} +12 $$ |