Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+3)^2-2(x-2)^2+(x-1)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2+12x+9-2(x^2-4x+4)+(x-1)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+12x+9-(2x^2-8x+8)+x^2+x-x-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^2+12x+9-(2x^2-8x+8)+x^2-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4x^2+12x+9-2x^2+8x-8+x^2-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2x^2+20x+1+x^2-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}3x^2+20x\end{aligned} $$ | |
① | Find $ \left(2x+3\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 3 }$. $$ \begin{aligned}\left(2x+3\right)^2 = \color{blue}{\left( 2x \right)^2} +2 \cdot 2x \cdot 3 + \color{red}{3^2} = 4x^2+12x+9\end{aligned} $$Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$ |
② | Multiply $ \color{blue}{2} $ by $ \left( x^2-4x+4\right) $ $$ \color{blue}{2} \cdot \left( x^2-4x+4\right) = 2x^2-8x+8 $$ Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+1\right) = x^2+ \cancel{x} -\cancel{x}-1 $$ |
③ | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{x}} \, \, \color{blue}{ -\cancel{x}} \,-1 = x^2-1 $$ |
④ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^2-8x+8 \right) = -2x^2+8x-8 $$ |
⑤ | Combine like terms: $$ \color{blue}{4x^2} + \color{red}{12x} + \color{green}{9} \color{blue}{-2x^2} + \color{red}{8x} \color{green}{-8} = \color{blue}{2x^2} + \color{red}{20x} + \color{green}{1} $$ |
⑥ | Combine like terms: $$ \color{blue}{2x^2} +20x+ \, \color{red}{ \cancel{1}} \,+ \color{blue}{x^2} \, \color{red}{ -\cancel{1}} \, = \color{blue}{3x^2} +20x $$ |