Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+3)(2x^2-3x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3-6x^2-2x+6x^2-9x-3 \xlongequal{ } \\[1 em] & \xlongequal{ }4x^3 -\cancel{6x^2}-2x+ \cancel{6x^2}-9x-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-11x-3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+3}\right) $ by each term in $ \left( 2x^2-3x-1\right) $. $$ \left( \color{blue}{2x+3}\right) \cdot \left( 2x^2-3x-1\right) = 4x^3 -\cancel{6x^2}-2x+ \cancel{6x^2}-9x-3 $$ |
② | Combine like terms: $$ 4x^3 \, \color{blue}{ -\cancel{6x^2}} \, \color{green}{-2x} + \, \color{blue}{ \cancel{6x^2}} \, \color{green}{-9x} -3 = 4x^3 \color{green}{-11x} -3 $$ |