Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+2)(2x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-4x+4x-4 \xlongequal{ } \\[1 em] & \xlongequal{ }4x^2 -\cancel{4x}+ \cancel{4x}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-4\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+2}\right) $ by each term in $ \left( 2x-2\right) $. $$ \left( \color{blue}{2x+2}\right) \cdot \left( 2x-2\right) = 4x^2 -\cancel{4x}+ \cancel{4x}-4 $$ |
② | Combine like terms: $$ 4x^2 \, \color{blue}{ -\cancel{4x}} \,+ \, \color{blue}{ \cancel{4x}} \,-4 = 4x^2-4 $$ |