Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+1)(x+3)(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x^2+6x+x+3)(x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2+7x+3)(x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^3+8x^2+7x^2+28x+3x+12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x^3+15x^2+31x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+1}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{2x+1}\right) \cdot \left( x+3\right) = 2x^2+6x+x+3 $$ |
② | Combine like terms: $$ 2x^2+ \color{blue}{6x} + \color{blue}{x} +3 = 2x^2+ \color{blue}{7x} +3 $$ |
③ | Multiply each term of $ \left( \color{blue}{2x^2+7x+3}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{2x^2+7x+3}\right) \cdot \left( x+4\right) = 2x^3+8x^2+7x^2+28x+3x+12 $$ |
④ | Combine like terms: $$ 2x^3+ \color{blue}{8x^2} + \color{blue}{7x^2} + \color{red}{28x} + \color{red}{3x} +12 = 2x^3+ \color{blue}{15x^2} + \color{red}{31x} +12 $$ |