Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+1)(3x-1)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(6x^2-2x+3x-1)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(6x^2+x-1)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^3+30x^2+x^2+5x-x-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}6x^3+31x^2+4x-5\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+1}\right) $ by each term in $ \left( 3x-1\right) $. $$ \left( \color{blue}{2x+1}\right) \cdot \left( 3x-1\right) = 6x^2-2x+3x-1 $$ |
② | Combine like terms: $$ 6x^2 \color{blue}{-2x} + \color{blue}{3x} -1 = 6x^2+ \color{blue}{x} -1 $$ |
③ | Multiply each term of $ \left( \color{blue}{6x^2+x-1}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{6x^2+x-1}\right) \cdot \left( x+5\right) = 6x^3+30x^2+x^2+5x-x-5 $$ |
④ | Combine like terms: $$ 6x^3+ \color{blue}{30x^2} + \color{blue}{x^2} + \color{red}{5x} \color{red}{-x} -5 = 6x^3+ \color{blue}{31x^2} + \color{red}{4x} -5 $$ |