Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x-5)(7^2-2x+8)& \xlongequal{ }(2x-5)(49-2x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-5)(-2x+57) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^2+114x+10x-285 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4x^2+124x-285\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{49} -2x+ \color{blue}{8} = -2x+ \color{blue}{57} $$ |
② | Multiply each term of $ \left( \color{blue}{2x-5}\right) $ by each term in $ \left( -2x+57\right) $. $$ \left( \color{blue}{2x-5}\right) \cdot \left( -2x+57\right) = -4x^2+114x+10x-285 $$ |
③ | Combine like terms: $$ -4x^2+ \color{blue}{114x} + \color{blue}{10x} -285 = -4x^2+ \color{blue}{124x} -285 $$ |