Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x-1)(x+3)^2(x-4)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-1)(x^2+6x+9)(x^2-8x+16) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^3+12x^2+18x-x^2-6x-9)(x^2-8x+16) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(2x^3+11x^2+12x-9)(x^2-8x+16) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2x^5-5x^4-44x^3+71x^2+264x-144\end{aligned} $$ | |
① | Find $ \left(x+3\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 3 }$. $$ \begin{aligned}\left(x+3\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 3 + \color{red}{3^2} = x^2+6x+9\end{aligned} $$Find $ \left(x-4\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 4 }$. $$ \begin{aligned}\left(x-4\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 4 + \color{red}{4^2} = x^2-8x+16\end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{2x-1}\right) $ by each term in $ \left( x^2+6x+9\right) $. $$ \left( \color{blue}{2x-1}\right) \cdot \left( x^2+6x+9\right) = 2x^3+12x^2+18x-x^2-6x-9 $$ |
③ | Combine like terms: $$ 2x^3+ \color{blue}{12x^2} + \color{red}{18x} \color{blue}{-x^2} \color{red}{-6x} -9 = 2x^3+ \color{blue}{11x^2} + \color{red}{12x} -9 $$ |
④ | Multiply each term of $ \left( \color{blue}{2x^3+11x^2+12x-9}\right) $ by each term in $ \left( x^2-8x+16\right) $. $$ \left( \color{blue}{2x^3+11x^2+12x-9}\right) \cdot \left( x^2-8x+16\right) = \\ = 2x^5-16x^4+32x^3+11x^4-88x^3+176x^2+12x^3-96x^2+192x-9x^2+72x-144 $$ |
⑤ | Combine like terms: $$ 2x^5 \color{blue}{-16x^4} + \color{red}{32x^3} + \color{blue}{11x^4} \color{green}{-88x^3} + \color{orange}{176x^2} + \color{green}{12x^3} \color{blue}{-96x^2} + \color{red}{192x} \color{blue}{-9x^2} + \color{red}{72x} -144 = \\ = 2x^5 \color{blue}{-5x^4} \color{green}{-44x^3} + \color{blue}{71x^2} + \color{red}{264x} -144 $$ |