Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x-1)(x^2-7x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3-14x^2+4x-x^2+7x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3-15x^2+11x-2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x-1}\right) $ by each term in $ \left( x^2-7x+2\right) $. $$ \left( \color{blue}{2x-1}\right) \cdot \left( x^2-7x+2\right) = 2x^3-14x^2+4x-x^2+7x-2 $$ |
② | Combine like terms: $$ 2x^3 \color{blue}{-14x^2} + \color{red}{4x} \color{blue}{-x^2} + \color{red}{7x} -2 = 2x^3 \color{blue}{-15x^2} + \color{red}{11x} -2 $$ |