Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+5)\cdot(7-4x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}14x-8x^2+35-20x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8x^2-6x+35\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+5}\right) $ by each term in $ \left( 7-4x\right) $. $$ \left( \color{blue}{2x+5}\right) \cdot \left( 7-4x\right) = 14x-8x^2+35-20x $$ |
② | Combine like terms: $$ \color{blue}{14x} -8x^2+35 \color{blue}{-20x} = -8x^2 \color{blue}{-6x} +35 $$ |