Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+3)(4x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^2-10x+12x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^2+2x-15\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+3}\right) $ by each term in $ \left( 4x-5\right) $. $$ \left( \color{blue}{2x+3}\right) \cdot \left( 4x-5\right) = 8x^2-10x+12x-15 $$ |
② | Combine like terms: $$ 8x^2 \color{blue}{-10x} + \color{blue}{12x} -15 = 8x^2+ \color{blue}{2x} -15 $$ |