Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+2)\cdot(3+4x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x+8x^2+6+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^2+14x+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+2}\right) $ by each term in $ \left( 3+4x\right) $. $$ \left( \color{blue}{2x+2}\right) \cdot \left( 3+4x\right) = 6x+8x^2+6+8x $$ |
② | Combine like terms: $$ \color{blue}{6x} +8x^2+6+ \color{blue}{8x} = 8x^2+ \color{blue}{14x} +6 $$ |