Tap the blue circles to see an explanation.
$$ \begin{aligned}2x^2+9x-6+3x^2+6x+12-(5x^2-10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^2+15x+6-(5x^2-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^2+15x+6-5x^2+10 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{5x^2}+15x+6 -\cancel{5x^2}+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}15x+16\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2x^2} + \color{red}{9x} \color{green}{-6} + \color{blue}{3x^2} + \color{red}{6x} + \color{green}{12} = \color{blue}{5x^2} + \color{red}{15x} + \color{green}{6} $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x^2-10 \right) = -5x^2+10 $$ |
③ | Combine like terms: $$ \, \color{blue}{ \cancel{5x^2}} \,+15x+ \color{green}{6} \, \color{blue}{ -\cancel{5x^2}} \,+ \color{green}{10} = 15x+ \color{green}{16} $$ |