Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x^2+7)\cdot(7-\frac{9}{x^2})+(7x+2+\frac{9}{x})\cdot4x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2+7)\frac{7x^2-9}{x^2}+\frac{7x^2+2x+9}{x}\cdot4x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{14x^4+31x^2-63}{x^2}+\frac{28x^3+8x^2+36x}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{42x^5+8x^4+67x^3-63x}{x^3}\end{aligned} $$ | |
① | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 7x+2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 2x^2+7 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2x^2+7 \cdot \frac{7x^2-9}{x^2} & \xlongequal{\text{Step 1}} \frac{2x^2+7}{\color{red}{1}} \cdot \frac{7x^2-9}{x^2} \xlongequal{\text{Step 2}} \frac{ \left( 2x^2+7 \right) \cdot \left( 7x^2-9 \right) }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 14x^4-18x^2+49x^2-63 }{ x^2 } = \frac{14x^4+31x^2-63}{x^2} \end{aligned} $$ |
④ | Step 1: Write $ 4x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{7x^2+2x+9}{x} \cdot 4x & \xlongequal{\text{Step 1}} \frac{7x^2+2x+9}{x} \cdot \frac{4x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 7x^2+2x+9 \right) \cdot 4x }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 28x^3+8x^2+36x }{ x } \end{aligned} $$ |
⑤ | To add raitonal expressions, both fractions must have the same denominator. |