Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x^2+5x-1)(4x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^3-6x^2+20x^2-15x-4x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^3+14x^2-19x+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x^2+5x-1}\right) $ by each term in $ \left( 4x-3\right) $. $$ \left( \color{blue}{2x^2+5x-1}\right) \cdot \left( 4x-3\right) = 8x^3-6x^2+20x^2-15x-4x+3 $$ |
② | Combine like terms: $$ 8x^3 \color{blue}{-6x^2} + \color{blue}{20x^2} \color{red}{-15x} \color{red}{-4x} +3 = 8x^3+ \color{blue}{14x^2} \color{red}{-19x} +3 $$ |